

Game Theory

I. CONCEPTS

A. Example (Ice-Cream)

- 3 kids: Adam (6\$), Bilal (4\$), Chang (3\$)
- 3 ice-cream types: 500g (7\$), 750g (9\$), 1000g (11\$)

B. Comparison:

Non-cooperative Game Theory:

- Players can't make binding agreements
- Competition between individual players
- Details of strategic interaction
- More "descriptive" (or positive) – How they should play it

Cooperative Game Theory:

- Binding agreements are possible
- Competition between coalitions
- "Black box" approach
- More "prescriptive" (or normative) – Focus more on the outcome of the game. The outcome would be like

II. COALITIONAL GAMES

A. Concept:

– Games with transferable utility (TU)

Players can transfer or distribute their utilities (which are divisible) among them.

- $N = \{1, 2, \dots, n\}$ the set of players
- $C, D, S \subseteq N$ are called coalition
- N is called a Grand Coalition
- $v : 2^N \rightarrow \mathbb{R}$: v is called characteristic (or worth, or value) function

The function v maps a subset of N into a real number, where 2^N is the total number of subsets of N . For example: there are $2^2 = 4$ subsets of $\{1, 2\}$, which are $\emptyset, \{1\}, \{2\}, \{1, 2\}$

- For any $C \subseteq N$, $v(C)$: value that the members of C can get from this game $G = (N, v)$

Definition 1: A transferable utility coalitional game is a pair $G = (N, v)$ where

- (a) $N = \{1, 2, \dots, n\}$ is the set of players;
- (b) $v : 2^N \rightarrow \mathbb{R}$ is the characteristic (value) function

– Games with nontransferable utility (NTU)

The utilities cannot be divided perfectly, like a car.

B. Example:

Compute the worth function of the Ice-Cream example.

- $v(\emptyset) = 0$
- $v(\{A\}) = v(\{B\}) = v(\{C\}) = 0$
- $v(\{A, B\}) = 750 = v(\{A, C\})$
- $v(\{B, C\}) = 500$
- $v(\{A, B, C\}) = 1000$

Note: We assume the payoff within a coalition will not be affected by the external coalitions or the environment.

III. OUTCOMES

A. Concept:

Definition 2: An outcome of a coalitional game $G = (N, v)$ is a pair (\mathcal{C}, x) where

- (1) $\mathcal{C} = \{C_1, C_2, \dots, C_k\}$ is the coalition structure, i.e., partition of N , satisfying
 - (a) $\cup_{i=1}^k C_i = N$, and
 - (b) $C_i \cap C_j = \emptyset, \forall i \neq j$: A player cannot be a member of two different coalitions
- (2) $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ is a payoff vector (indicating the value each player i gets), satisfying
 - (a) $x_i \geq v(\{i\}), \text{ for all } i \in N$ – [Individual Rationality]
 - (b) $\sum_{i \in C} x_i = v(C), \text{ for all } C \in \mathcal{C}$ – [Feasibility]

B. Example:

Ice-Cream example.

- $((\{A, B\}, \{C\}), (400, 350, 0))$ One possible outcome of the ice-cream game
- $((\{A, B, C\}), (500, 300, 200))$ One possible outcome of the ice-cream game
- $((\{A, B\}, \{C\}), (500, 300, 200))$ Not an outcome of the ice-cream

Because: $v(\{A, B\}) = 750$, they cannot divide 1000 as the payoff

IV. SUPERADDITIVE GAMES

A. Concept:

Definition 3: A game $G = (N, v)$ is superadditive if $v(C \cup D) \geq v(C) + v(D)$ for all $C, D \subseteq N$ with $C \cap D = \emptyset$

- The bigger, the better, meaning that the bigger coalition always creates no less values (could be equal)
- We will assume superadditivity (for notation simplicity)
- So we do not need to worry about \mathcal{C} (coalition structure), i.e., the optimal coalition will be the grand coalition.
We can ignore \mathcal{C} and just focus on the payoff vector
- Ice-cream game is superadditive
- Hence, for those superadditive games, the outcome is just the payoff vector $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ satisfying
 - (a) $x_i \geq v(\{i\}), \forall i \in N$
 - (b) $\sum_{i=1}^n x_i = v(N)$

V. STABILITY (CORE)

A. Concept

Definition 4: Core of a game G is the set of all stable outcomes

$$\text{Core}(G) = \left\{ x \mid \sum_{i \in C} x_i \geq v(C), \text{ for all } C \subseteq N \right\} \quad (1)$$

– Meaning that, if (1) is not satisfied, players in the coalition C have incentives to leave the coalition C and form their own coalitions. For example, if $C = N$, and (1) is not satisfied, it means that the grand coalition is not best for every player. Therefore, they may form some other smaller coalitions.

– Can we say there always exists stable outcomes for a game? Or can the set of core allocations be empty?

(Yes, it can be empty)

B. Example

Calculate the set of stable outcomes: $N = \{1, 2, 3\}$, $v(C) = 1$ if $\#C > 1$ (i.e., the number of players in coalition C is larger than 1) and $v(C) = 0$ otherwise.

- A potential payoff vector: $x = (x_1, x_2, x_3)$, the conditions to meet:
 - (1) Individual Rationality: $x_1 \geq v(\{x_1\}) = 0$; $x_2 \geq v(\{x_2\}) = 0$; $x_3 \geq v(\{x_3\}) = 0$
 - (2) Feasibility: $x_1 + x_2 + x_3 = v(\{x_1, x_2, x_3\}) = 1$

Conditions to meet as a core:

- The potential coalitions:
 - \emptyset
 - $\{1\} \rightarrow x_1 \geq 0$
 - $\{2\} \rightarrow x_2 \geq 0$
 - $\{3\} \rightarrow x_3 \geq 0$
 - $\{1, 2\} \rightarrow x_1 + x_2 \geq v(\{x_1, x_2\}) = 1 \rightarrow 1 - x_3 \geq 1 \rightarrow x_3 \leq 0 \rightarrow x_3 = 0$
 - $\{1, 3\} \rightarrow x_1 + x_3 \geq v(\{x_1, x_3\}) = 1 \rightarrow x_1 \geq 1$
 - $\{2, 3\} \rightarrow x_2 + x_3 \geq v(\{x_2, x_3\}) = 1 \rightarrow x_2 \geq 1$, i.e., $x_1 + x_2 \geq 2$ which is conflict with $x_1 + x_2 = 1$
 - $\{1, 2, 3\} \rightarrow x_1 + x_2 + x_3 \geq v(\{x_1, x_2, x_3\}) = 1$ (feasibility captures this requirement)

No solution satisfies the seven requirements so that x is a stable outcome! That is, $\text{Core}(G) = \emptyset$

VI. ϵ -CORE

A. Concept

Definition 5: For any $\epsilon > 0$,

$$\epsilon\text{-Core}(G) = \left\{ x \mid \sum_{i \in C} x_i \geq v(C) - \epsilon, \text{ for all } C \subseteq N \right\} \quad (2)$$

Definition 6:

$$\epsilon^*(G) = \inf\{\epsilon > 0 \mid \epsilon\text{-core of } G \text{ is non-empty}\} \quad (3)$$

$\epsilon^*(G)$ is called least-core of G .

VII. SHAPLEY VALUE

A. Concept

Given $G = (N, v)$, the **Shapley value** of player i is

$$\phi_i(N, v) = \frac{1}{n!} \left(\sum_{S \subseteq N \setminus \{i\}} |S|!(n-1-|S|)! \left[v(S \cup \{i\}) - v(S) \right] \right) \quad (4)$$

$$= \frac{1}{n} \left(\sum_{S \subseteq N \setminus \{i\}} \frac{1}{C_{n-1}^{|S|}} \left[v(S \cup \{i\}) - v(S) \right] \right), \quad (5)$$

where $n = |N|$ is the number of players in the set N .

Understanding:

(a). First, we would explain that (4) is equivalent to (5).

For any coalition S where i is not included, we have

$$\frac{|S|!(n-1-|S|)!}{n!} = \frac{1}{n} \frac{|S|!(n-1-|S|)!}{(n-1)!} = \frac{1}{n} \frac{1}{C_{n-1}^{|S|}}, \quad (6)$$

where $C_{n-1}^{|S|} = \frac{(n-1)!}{|S|!(n-1-|S|)!}$, denoting the number of all subsets (i.e., coalitions) of the set $N \setminus \{i\}$, where $|S| \in \{0, 1, \dots, n-1\}$. Note that $0! = 1$ and $1! = 1$.

(b). Next, we would explain the meaning of (5).

For each type of coalition S with a certain size of $|S|$, $v(S \cup \{i\}) - v(S)$ denotes the marginal contribution of player i to the coalition S . The number of different coalitions with the same size $|S|$ is $C_{n-1}^{|S|}$. Thus,

$$\sum_{S \subseteq N \setminus \{i\}} \frac{1}{C_{n-1}^{|S|}} \left[v(S \cup \{i\}) - v(S) \right] \quad (7)$$

represents the average marginal contribution of player i to one type of coalition S of size $|S|$. In total, there are n types of coalitions, i.e., $|S| = 0, 1, \dots, n-1$, where $|S| = 0$ corresponds to $S = \emptyset$. Consequently, even out player i 's marginal contribution further to each type of coalition, its Shapley value is denoted as

$$\phi_i(N, v) = \frac{1}{n} \left(\sum_{S \subseteq N \setminus \{i\}} \frac{1}{C_{n-1}^{|S|}} \left[v(S \cup \{i\}) - v(S) \right] \right). \quad (8)$$

B. Example

Compute the Shapley value of each player in the inc-cream game, where $N = \{1, 2, 3\}$ and $n = 3$.

(1) Shapley value of player 1:

Coalitions without including 1: $S = \emptyset, \{2\}, \{3\}, \{2, 3\}$.

For $|S| = 0$, we have $\frac{1}{C_2^0} [v(\{1\}) - v(\emptyset)] = 0$;

For $|S| = 1$, we have $\frac{1}{C_2^1} [v(\{1, 2\}) - v(\{1\}) + v(\{1, 3\}) - v(\{1\})] = \frac{1}{2} (750 + 750) = 750$;

For $|S| = 2$, we have $\frac{1}{C_2^2} [v(\{1, 2, 3\}) - v(\{2, 3\})] = 1000 - 500 = 500$;

Thus, $\phi_1(N, v) = \frac{1}{3} (0 + 750 + 500) = \frac{1250}{3}$

(2) Shapley value of player 2:

Coalitions without including 2: $S = \emptyset, \{1\}, \{3\}, \{1, 3\}$.

For $|S| = 0$, we have $\frac{1}{C_2^0} [v(\{2\}) - v(\emptyset)] = 0$;

For $|S| = 1$, we have $\frac{1}{C_2^1}[v(\{1, 2\}) - v(\{1\}) + v(\{2, 3\}) - v(\{3\})] = \frac{1}{2}(750 + 500) = 625$;

For $|S| = 2$, we have $\frac{1}{C_2^2}[v(\{1, 2, 3\}) - v(\{1, 3\})] = 1000 - 750 = 250$;

Thus, $\phi_2(N, v) = \frac{1}{3}(0 + 625 + 250) = \frac{875}{3}$

(3) Shapley value of player 3:

Congressions without including 3: $S = \emptyset, \{1\}, \{2\}, \{1, 2\}$.

For $|S| = 0$, we have $\frac{1}{C_2^0}[v(\{3\}) - v(\emptyset)] = 0$;

For $|S| = 1$, we have $\frac{1}{C_2^1}[v(\{1, 3\}) - v(\{1\}) + v(\{2, 3\}) - v(\{2\})] = \frac{1}{2}(750 + 500) = 625$;

For $|S| = 2$, we have $\frac{1}{C_2^2}[v(\{1, 2, 3\}) - v(\{1, 2\})] = 1000 - 750 = 250$;

Thus, $\phi_3(N, v) = \frac{1}{3}(0 + 625 + 250) = \frac{875}{3}$

Therefore,

$$(\phi_1, \phi_2, \phi_3) = \left(\frac{1250}{3}, \frac{875}{3}, \frac{875}{3}\right), \quad (9)$$

where we can see $\phi_1 + \phi_2 + \phi_3 = 1000$, meaning that it is feasible. In addition, $\phi_1, \phi_2, \phi_3 \geq 0$, so all of them are individually rational (see III. (2)). Therefore, (9) is an outcome of the ice-cream game. But note that, it is not a stable outcome.

VIII. AXIOMATIZATION OF SHAPELY VALUE

A. Concept

*Definition 7: Players i and j are **interchangeable** if for all $S \subseteq N \setminus \{i, j\}$,*

$$v(S \cup \{i\}) = v(S \cup \{j\}). \quad (10)$$

It says: the marginal contribution of player i and j to any coalition is the same.

Axiom 1 (Symmetry): If player i and j are interchangeable, then

$$x_i(N, v) = x_j(N, v). \quad (11)$$

Meaning that the payoff of player i and j must be the same.

*Definition 8: Player i is called a **dummy player** if for all $S \subseteq N \setminus \{i\}$,*

$$v(S \cup \{i\}) - v(S) = v(\{i\}). \quad (12)$$

That is, the marginal contribution of player i is exactly equal to the worth of himself. In other words, player i 's marginal contribution to any coalition is identical to what he could achieve by being alone.

Axiom 2 (Dummy player): If i is a dummy player, then

$$x_i(N, v) = v(\{i\}). \quad (13)$$

His payoff from the game with the set of players N and the worth function must be equal to what he could achieve if he was alone.

Axiom 3 (Additivity): For any two games $G_1 = (N, v_1)$, $G_2 = (N, v_2)$, and for any player $i \in N$. If we define a new game $G(N, v_1 + v_2)$, then the payoff of player i is $x_i(N, v_1 + v_2) = x_i(N, v_1) + x_i(N, v_2)$, and

$$(v_1 + v_2)(S) = v_1(S) + v_2(S), \quad \forall S \subseteq N. \quad (14)$$

Theorem 1: Given any coalitional game $G = (N, v)$, there is a unique payoff division rule $x(N, v) = \phi(N, v)$ that divides the full payoff of the grand coalition and that satisfies the symmetry, dummy player and additivity axioms, where $x(N, v) = (x_1, x_2, \dots, x_n)$, $\phi(N, v) = (\phi_1, \phi_2, \dots, \phi_n)$. This payoff division $\phi(N, v)$ is called the Shapley value.

IX. SOME POSITIVE RESULTS

A. Concept

Definition 9: Player i is a **veto player** if $v(N \setminus \{i\}) = 0$.

If you take player i out of the grand coalition N , then the worth of the coalition is zero. In this sense, player i is a very key player in the game.

Definition 10: $G = (N, v)$ is **convex** if $\forall S, T \subseteq N$, $v(S \cup T) \geq v(S) + v(T) - v(S \cap T)$.

Superadditive: $\forall S, T \subseteq N$ such that $S \cap T = \emptyset$, there is $v(S \cup T) \geq v(S) + v(T)$. Thus, if a game is convex, it is superadditive. It can not deduce that if a game is superadditive then it is convex.

Definition 11: G is a **simple game** if the worth function $v(S)$ is either 0 or 1, $\forall S \subseteq N$, and for grand coalition, $v(N) = 1$. (For example, voting games)

Theorem 2: In a simple coalitional game G , the core is empty iff there is no veto player. If there are veto players, then the core consists of all payoff vectors in which the non-veto players get 0.

Theorem 3: Every convex game has a non-empty core.

Theorem 4: If every convex game, the Shapley value is in the core.

X. BANZHAF INDEX

A. Concept

For any $G = (N, v)$, the **Banzhaf index** of player i is

$$\beta_i(N, v) = \frac{1}{2^{n-1}} \sum_{S \subseteq N \setminus \{i\}} [v(S \cup \{i\}) - v(S)] \quad (15)$$

where for each player i , there are 2^{n-1} coalitions excluding i , including the empty coalition.

B. Example

Ice-cream Example:

$S \quad v$

$\emptyset \rightarrow 0$

$\{1\} \rightarrow 0$

$$\{2\} \rightarrow 0$$

$$\{3\} \rightarrow 0$$

$$\{1, 2\} \rightarrow 750$$

$$\{1, 3\} \rightarrow 750$$

$$\{2, 3\} \rightarrow 500$$

$$\{1, 2, 3\} \rightarrow 1000$$

(i) For player 1, $S = \emptyset, \{2\}, \{3\}, \{2, 3\}$

$$\begin{aligned}\beta_1(N, v) &= \frac{1}{4}[0 + [v(\{1, 2\}) - v(\{2\})] + [v(\{1, 3\}) - v(\{3\})] + v(\{1, 2, 3\}) - v(\{2, 3\})] \\ &= \frac{1}{4}[750 + 750 + 1000 - 500] = 500\end{aligned}$$

(ii) For player 2, $S = \emptyset, \{1\}, \{3\}, \{1, 3\}$

$$\begin{aligned}\beta_2(N, v) &= \frac{1}{4}[0 + [v(\{1, 2\}) - v(\{1\})] + [v(\{2, 3\}) - v(\{3\})] + v(\{1, 2, 3\}) - v(\{1, 3\})] \\ &= \frac{1}{4}[750 + 500 + 1000 - 750] = 375\end{aligned}$$

(iii) For player 3, $S = \emptyset, \{1\}, \{2\}, \{1, 2\}$

$$\begin{aligned}\beta_3(N, v) &= \frac{1}{4}[0 + [v(\{1, 3\}) - v(\{1\})] + [v(\{2, 3\}) - v(\{2\})] + v(\{1, 2, 3\}) - v(\{1, 2\})] \\ &= \frac{1}{4}[750 + 500 + 1000 - 750] = 375\end{aligned}$$

Thus, $\beta(N, v) = (500, 375, 375)$, which is not a feasible payoff vector, as the sum is more than 1000, i.e., $v(N)$.

One result: The Banzhaf index always satisfies [dummy player](#), [symmetry](#), and [additivity](#), but in some games, it violates [feasibility](#).